5 Назначение и описание интерфейсных сигналов

5.1 Обзор сигналов

Физически интерфейс состоит из получателей и драйверов, сообщающихся через множество проводников, используя асинхронный интерфейсный протокол. В таблице 7 определены названия сигналов. Описание разъемов см. в Приложении А. Драйверы и терминаторы определены в п. 4.2.1. Сигнальные протокола и тайминги определяются в разделах 9 и 10.

Таблица 7 – Назначенные названия сигналов

Описание	Хост	Направление	Устройство	Сокращение
Cable select (Выбор кабелем)	(0	м. Примечани	CSEL	
Chip select 0 (Выбор чипом 0)			\rightarrow	CS0-
Chip select 1 (Выбор чипом 1)			\rightarrow	CS1-
Data bus bit 0 (Бит 0 шины данных)		\leftrightarrow		DD0
Data bus bit 1 (Бит 1 шины данных)		\leftrightarrow		DD1
Data bus bit 2 (Бит 2 шины данных)		\leftrightarrow		DD2
Data bus bit 3 (Бит 3 шины данных)		\leftrightarrow		DD3
Data bus bit 4 (Бит 4 шины данных)		\leftrightarrow		DD4
Data bus bit 5 (Бит 5 шины данных)		\leftrightarrow		DD5
Data bus bit 6 (Бит 6 шины данных)		\leftrightarrow		DD6
Data bus bit 7 (Бит 7 шины данных)		\leftrightarrow		DD7
Data bus bit 8 (Бит 8 шины данных)		\leftrightarrow		DD8
Data bus bit 9 (Бит 9 шины данных)		\leftrightarrow		DD9
Data bus bit 10 (Бит 10 шины данных)		\leftrightarrow		DD10
Data bus bit 11 (Бит 11 шины данных)		\leftrightarrow		DD11
Data bus bit 12 (Бит 12 шины данных)		\leftrightarrow		DD12
Data bus bit 13 (Бит 13 шины данных)		\leftrightarrow		DD13
Data bus bit 14 (Бит 14 шины данных)		\leftrightarrow		DD14
Data bus bit 15 (Бит 15 шины данных)		\leftrightarrow		DD15
Device active or slave (Device 1) present	(0	м. Примечани	1e)	DASP
(Имеется активное или подчиненное			- /	
устройство (Устройство 1))				
Device address bit 0 (Бит 0 адреса устройства)			\rightarrow	DA0
Device address bit 1 (Бит 1 адреса устройства)			\rightarrow	DA1
Device address bit 2 (Бит 2 адреса устройства)			\rightarrow	DA2
DMA acknowledge (Подтверждение DMA)			\rightarrow	DMACK
DMA request (Запрос DMA)	←			DMARQ
Interrupt request (Запрос прерывания)	←			INTRQ
I\O read (Чтение порта ввода/вывода)			\rightarrow	DIOR
DMA ready during Ultra DMA data-in bursts			\rightarrow	HDMARDY
(Готовность DMA в процессе приема порции				
данных в режиме UDMA)				
Data strobe during Ultra DMA data-out bursts			\rightarrow	HSTROBE
(Готовность DMA в процессе отправки порции				
данных в режиме UDMA)				IODDV
I/O ready (Готовность порта ввода/вывода)	←			IORDY
DMA ready during Ultra DMA data-out bursts (Готовность DMA в процессе отправки порции	←			DDMARDY
данных в режиме UDMA)				
Data strobe during Ultra DMA data-in bursts	←			DSTROBE
(Готовность DMA в процессе приема порции				DOTTOBL
данных в режиме UDMA)				
I/O write (Запись в порт ввода/вывода)			\rightarrow	DIOW
Stop during Ultra DMA data bursts (Остановка в			\rightarrow	STOP
	1			<u> </u>

процессе обработки порции данных в режиме UDMA)		
Passed diagnostics (Прошедшая диагностика)	(см. Примечание)	PDIAG
Cable assembly type identifier (Идентификатор	(см. Примечание)	CBLID
типа кабеля)		
Reset (Перезагрузка)	\rightarrow	RESET

ПРИМЕЧАНИЕ - См. описания сигналов и приложение А для определения источников этих сигналов.

5.2 Описание сигналов

5.2.1 CS (1:0)- (Выбор чипом)

Эти сигналы используются хостом для выбора командного блока регистров или блока регистров управления. Когда утвержден сигнал DMACK-, сигналы CS0- и CS1- должны быть отвергнуты и передача устанавливается величиной в $16 \, \text{байт}^7$.

5.2.2 DA (2:0) (Адрес устройства)

Адрес являеится как трехбитным бинарным значением, устанавливаемым хостом для обеспечения доступа к регистру или порту данных устройства (см. п. 7.2). Этот адрес является трехбитной

5.2.3 DASP- (Устройство активно, Имеется Устройство 1)

Этот сигнал является сигналом с временным мультиплексированием и показывает, что устройство активно, или что имеется устройство 1. ПРИМЕЧАНИЕ: Индикация того, что устройство активно, может быть рассинхронизировано с выполнением команды.

5.2.4 DD (15:0) (Данные устройства)

Это 8- или 16-битный двунаправленный интерфейс данных между хостом и устройством. Младшие 8 бит используются для 8-битных регистровых передач данных. Данные передаются всегда величиной в 16-бит за исключением обменов данными в компакт-флеш устройствах.

5.2.5 DIOR-:HDMARDY-:HSTROBE (Чтение портов ввода/вывода устройства: готовность Ultra DMA: строб данных Ultra DMA)

DIOR- это строб-сигнал, устанавливаемый хостом для чтения регистров устройства или порта данных. HDMARDY- сигнал контроля потока порций данных Ultra DMA. Этот сигнал выставляется хостом устройству для определения хостом что он готов принять порцию данных Ultra DMA. Хост может отвергнуть сигнал HDMARDY- для остановки порции данных Ultra DMA.

HSTROBE является сигналом исходящего строба хоста для порции данных Ultra DMA. Как повышение так и понижение зубцов сигнала HSTROBE перенаправляют данные из (15:0) внутрь устройства. Хост может прекратить генерирование зубцов сигнала HSTROBE для остановки передачи (приема) порции данных Ultra.

5.2.6 DIOW-:STOP (Запись портов ввода/вывода: Остановка порции Ultra DMA)

DIOW- это строб-сигнал, выставляемый хостом для записи регистров устройства или порта данных. DIOW- может быть отвергнут хостом прежде чем инициируется порция данных Ultra DMA. STOP должно быть отвергнуто хостом прежде чем данные передадутся в порции данных Ultra DMA. Установка сигнала STOP хостом во время отработки сигналов порции данных Ultra DMA является окончанием передачи порции данных Ultra DMA.

5.2.7 DMACK- (Подтвержение DMA)

Этот сигнал будет использоваться хостом в ответ сигналу DMARQ для инициации обменов DMA.

5.2.8 DMARQ (Запрос DMA)

⁷ В текущем Стандарте для определения величины блока передачи данных используется слово "wide", подразумевая «ширину» в байтах или словах; мы будем использовать более привычное русское слово «величина» [Прим. переводчика]

⁸ В текущем переводе слово "asserted" переводится в двух значениях: «выставляемый» или «устанавливаемый». Эти слова в текущем переводе, относительно сигналов, являются равнозначными [Прим. переводчика]

Этот сигнал используется для передачи данных по протоколам DMA между хостом и устройством. будет выставляться устройством если устройство готово к передаче данных в или из хоста. Для передачи данных по протоколу Mulitword DMA, направление передачи данных контролируется сигналами DIOR- и DIOW-. Этот сигнал используется на манер рукопожатия с DMACK-, т.е. устройство будет ждать до тех пор пока хост выставит сигнал DMACK- перед снятием сигнала DMARQ, и переустановит сигнал DMARQ если имеется что-то еще для передачи. Когда задействована операция DMA, сигналы CS0- и CS1- не будут установлены и передача будет иметь величину 16 бит. Этот сигнал будет отменен если устройство не выбрано.

5.2.9 INTRQ (Прерывание устройства)

Этот сигнал используется выбранным устройством для прерывания хост-системы когда установлено ожидаемое прерывание. Когда бит nIEN установлен в ноль или устройство выбрано, будет включно INTRQ посредством трех-статусного буфера. Если бит nIEN установлен в единицу или устройство не выбрано, сигнал INTRQ будет ожидать. Когда устновлено, этот сигнал будет отвергаться устройством в пределах 400 наносекунд снятия DIOR-; устройство в это время производит чтение регистра статуса для отмены ожидания прерывания. . Когда устновлено, этот сигнал будет отвергаться устройством в пределах 400 наносекунд снятия DIOR-; устройство в это время производит запись в регистр команд для отмены ожидания прерывания.

Когда устройство выбрано записью в регистр устройства прежде чем устанавливается ожидание прерывания, INTRQ будет выставлено в пределах 400 наносекунд снятия DIOW-; устройство в это время производит запись в регистр данных. Когда устройство не выбрано записью в регистр устройства прежде чем установится ожидание прерывания, INTRQ будет выставлено в пределах 400 наносекунд DIOW-; устройство в это время производит запись в регистр устройства. Для устройств, поддерживающих функции наложения, если установка INTRQ будучи отключена с использованием бита nIEN в тот самый момент, когда устройство выставляет INTRQ, минимальная ширина импульса будет составлять по крайней мере 40 наносекунд.

5.2.10 IORDY:DDMARDY-:DSTROBE (Готовность канала ввода/вывода: готовность Ultra DMA: Строб⁹ данных Ultra DMA)

Этот сигнал снимается для расширения цикла передачи данных хостом для доступа к любому регистру (записи или чтения) хоста когда устройство не готово к ответу на запрос передачи данных. Если устройство требует чтобы время цикла передачи хоста расширялось для режимов PIO 3 и выше, устройство должно использовать IORDY. Хосты, которые используют режим PIO 3 и выше, будут поддерживать IORDY.

DDMARDY является сигналом контроля потока передачи для исходящих порций данных в DMA. Этот сигнал выставляется устройством для информирования хоста о том, что устройство готово к получению исходящих порций данных DMA. Устройство может снять сигнал DDMARDY- для остановки исходящей порции данных Ultra DMA.

DSTROBE является строб-сигналом входящих данных устройства для входящей порции данных Ultra DMA. Как повышение, так и понижение уровня сигнала DSTROBE запирает данные из DD(15:0) внутрь хоста. Устройство может остановить генерирование зубцов сигнала DSTROBE для остановки входящей порции данных Ultra DMA. Сигнал освобождается, если устройство не выбрано.

5.2.11 PDIAG-:CBLID- (Диагностика завершена [положительно]: Идентификатор типа подключенного кабеля)

PDIAG- будет установлено устройством 1 для того, чтобы показать устройству 0 что устройство 1 завершило диагностику (см. раздел 9). Хост может брать образец сигнала CBLID- после включения питания или рестарта в порядке определения наличия или отсутствия 80-жильного интерфейсного кабеля посредством выполнения следующих шагов:

- а) Ожидать пока протокол включения питания или рестарта завершится для всех устройств на кабеле; запомнить, какие устройства имеются для последнего шага.
- b) Если устройство 1 не представлено, перейти к шагу d.
- c) Выполнить команды IDENTIFY DEVICE или IDENTIFY PACKET DEVICE для Устройства 1. Из полученного ответа, записать слово 80 и слово 93 для последнего шага.

⁹ В текущем Стандарте слово "strobe" используется в значении мгновенного (импульсного), направленного потока данных. Для перевода использовано русское написание этого слова «строб», значение которого определено выше [Прим. переводчика].

- Примечание: бит 3 слова 80 показывает совместимость устройства со Стандартом ATA-3 и последующих Стандартов; биты 15-13 слова 93 показывают, что сигнал CBLID-поддерживается устройством по механизму взятия шаблона.
- d) Выполнить команды IDENTIFY DEVICE или IDENTIFY PACKET DEVICE для устройства 0. Из полученного ответа запомнить слова 80 и 93 для последнего шага. Примечание: биты 15-13 слова 93 показывают, что сигнал CBLID- поддерживается устройством по механизму взятия шаблона.
- e) Определить состояние сигнала CBLID- в разъеме хоста и записать результат для последнего шага. Примечание: Любое устройство, совместимое со Стандартом ATA-3 или выше освобождает сигнал PDIAG- не позднее первой команды, следующей за последовательностью действий по включениею питания или рестарту и не вмешивается в определение хостом сигнала CBLID- на этом шаге.
- f) Просмотр вывода (см. табл. 8), основанного на данных, записанных на а, с, d, и е. X представляет безразличный ввод. Примечание: Некоторые устройства, требующие совместимости со Стандартом ATA-3 или выше, известны в продолжение установки сигнала CBLID-:PDIAG- при некоторых ограничениях и на 40-жильном кабеле; при этом 40-жильный кабель будет определяться устройством как 80-жильный.

Таблица 8 – Идентификация типа кабеля

Ввод	Ввод						
Чувствительность CBLID-	Бит 3 слова 80 устройства 1	Биты 15-13 слова 93 устройства 1	Биты 15-13 слова 93 устройства 0	Число проводников в кабеле			
Высокая	Х	XXX	XXX	40			
Низкая	Устройства нет	Устройства нет	00X или 1XX	80			
Низкая	Устройства нет	Устройства нет	010	Прим. 2			
Низкая	Устройства нет	Устройства нет	011	80			
Низкая	0	00Х или 1ХХ	Устройства нет	Прим. 1			
Низкая	0	00X или 1XX	00X или 1XX	Прим. 1			
Низкая	0	00X или 1XX	010	Прим. 2			
Низкая	0	00X или 1XX	011	80			
Низкая	0	010	Устройства нет	Прим. 2			
Низкая	0	010	XXX	Прим. 2			
Низкая	0	011	Устройства нет	80			
Низкая	0	011	00X или 1XX	80			
Низкая	0	011	010	Прим. 2			
Низкая	0	011	011	80			
Низкая	1	00X или 1XX	Устройства нет	80			
Низкая	1	00Х или 1ХХ	00X или 1XX	80			
Низкая	1	00Х или 1ХХ	010	Прим. 2			
Низкая	1	00Х или 1ХХ	011	80			
Низкая	1	010	Устройства нет	Прим. 2			
Низкая	1	010	XXX	Прим. 2			
Низкая	1	011	Устройства нет	80			
Низкая	1	011	00X или 1XX	80			
Низкая	1	011	010	Прим. 2			
Низкая	1	011	011	80			

ПРИМЕЧАНИЯ -

- 1 Хост не может определить тип кабеля основываясь на недостаточной информации. В случае недостаточности информации, хост не будет использовать режимы передачи выше UDMA-2 без использования других средств для подтверждения наличия 80-жильного кабеля.
- 2 Хост не может определить тип кабеля основываясь на конфликтной информации. В случае конфликтности информации, хост не будет использовать режимы передачи выше UDMA-2 без использования других средств для подтверждения наличия 80-жильного кабеля.

См. Приложение В, описывающее нестандартные способы определения типа кабеля.

5.2.13 CSEL (Выбор кабелем)

Устройство может быть конфигурировано как Устройство 0 или Устройство 1 в зависимости от значения сигнала CSEL:

- Если CSEL снят, то номер устройства 0;
- Если CSEL выставлен, номер устройства 1.

Состояние этого сигнала в любое время может быть дискретизировано 10 для подтверждения того, что устройство является устройством 1 или 0.

5.2.13.1 Сигнал CSEL для 40-жильного кабеля

Для выборочного обоснования сигнала могут быть использованы особые проводники. CSEL устройства 0 соединяется с проводником CSEL в кабеле, и заземляется, таким образом разрешая устройству определить себя как устройство 0. Сигнал CSEL устройства 1 не соединен с проводником CSEL поскольку этот проводник удален, и таким образом устройство определяется как устройство 1. Если на кабеле имеется только одно устройство, присоединенное к конечному разъему кабеля, оно определяется посредством сигнала CSEL как устройство 1. См. рис. 3 и 4.

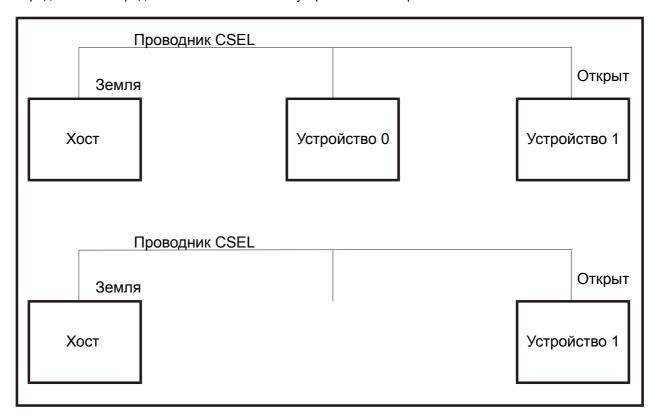


Рис. 3 – Пример выбора кабеля

5.2.13.2 Сигнал CSEL для 80-жильного кабеля

Для обозначенных типов кабелей (включая все типы 80-жильных кабелей): эти типы кабелей сконструированы таким образом, что CSEL соединяется от разъема хоста к разъему на противоположном от хоста конце кабеля (см. рис. 4). Поэтому устройство 0 будет находиться на противоположном конце кабеля относительно хоста. Конфигурации устройства, когда оно представлено на кабеле одно, и не подключено к самому дальнему концу кабеля относительно хоста, не будут использоваться в режимах Ultra DMA.

_

¹⁰ Мне не знакомо слово, которым можно было бы однозначно охарактеризовать этот термин (в Стандарте – "sampled"), поэтому здесь я принимаю к использованию наиболее подходящее по значению слово «дискретизация». В данном ключе, дискретизация есть определение в проводнике, какой именно сигнал установлен или не установлен, за краткий промежуток времени, равный прохождению одного блока данных через интерфейс [Прим. переводчика].

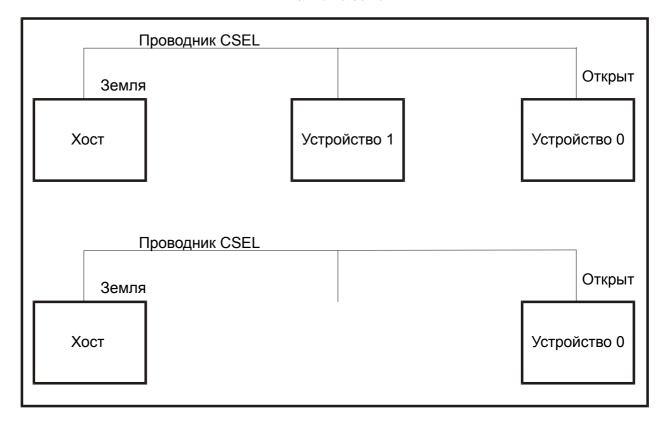


Рис. 4 – Дополнительный пример выбора кабеля